Design and Analysis of Flight Control Chassis

Design, Optimization, Analysis, Composites, Commercial Aerospace


Honeywell needs to certify a Flight Control Chassis for a new aircraft environment. The chassis, based on one used in another aircraft, must survive vibration, acceleration, and “abuse” loads. In addition to verifying that the existing design will survive, Honeywell is interested in reducing the weight of the chassis, either by optimization of the existing aluminum design, or by moving to a composite design.


Perform Detailed Analysis

A detailed finite element model was created of the baseline design, with particular care to accurately model the preload applied by the self-torquing quick-release fasteners that hold the modules in the chassis. Quasi-static, random and sinusoidal vibration analyses were performed to ensure that the chassis would survive the operational environment, and fatigue analysis was performed to guarantee that the chassis would survive a working life of many years. Fastener loads and margins of safety were also calculated.

Optimize Existing Design

Optistruct-based topology optimization was used to gain insight into changes that could be made to make the baseline design more efficient. The optimization results, together with engineering judgment, resulted in a lightweight aluminum design. A second, composite design exploited the information gained in the aluminum design process, together with knowledge of composite manufacturing techniques, further reducing the chassis weight.

Quartus performed static, quasi-static, and dynamic analysis of the Flight Control Chassis and confirmed that it could survive the required loading. Quartus also designed and analyzed a lightweight aluminum chassis that reduced the baseline weight by 36%, and a graphite composite chassis that reduced the baseline weight by 63%.

Engineering Disciplines

Software & Tools

  • FEMAP™
  • I-DEAS NX™
  • Optistruct™

Related Projects

Orion E-STA Dynamic Correlation Analysis, Test, Dynamics, Commercial Aerospace
Airborne Lidar System Systems Engineering, Manufacturing, Optics, Design for Manufacturing, Precision Machine Design, Commercial Aerospace
MAHLI & Mast Cam Analysis, Thermal, Optics, Electronics, Commercial Aerospace

Have a problem we can solve?

Who We Are

Quartus Engineering specializes in system design & development, simulation & analysis, testing, prototyping and manufacturing of mechanical systems for a wide-range of industries and are experts in simulation-driven engineering. We are a complete engineering solution provider from concept, prototype through low volume or complex production. We design for manufacturability and transition to high volumes with ease with Quartus as your guide. Quartus has depth and broad range of industry and product experience that includes: Civil/Space, Defense, Aircraft/Transportation, Consumer Products, Optics & Photonics and Medical/Life Science. Quartus is focused on game changing applications like remote sensing, metrology, thermal, LiDAR, use of novel materials and other innovative technologies and measurement approaches that span multiple industries and are faced with extreme environments and other complex engineering challenges.

SAN DIEGO 9689 Towne Centre Dr San Diego, California 92121 T (858) 875-6000   MORE INFO
HERNDON 2300 Dulles Station Blvd Suite 650 Herndon, Virginia 20171 T (571) 266-5300 MORE INFO